
This is where most documentation about my lab and experiences will be stored. for archival and as
a free knowledge base to anyone who might stumble upon it

Setting up a tailscale/headscale exit-node
IP Index (WIP)
Webhooks
Disabling "Predictable" Network Interface names

Lab Docs,
Tutorials/Guides and
Notes

The example below is for linux client

1. install tailscale using your method of choice, I picked the one liner script

one liner script from tailscale
curl -fsSL https://tailscale.com/install.sh | sh

If for some reason you can't use the one liner script to install it, refer to the official docs for
manually installing at
https://tailscale.com/download/linux/debian-bookworm

2. run this command to initiate the tailscale client with a custom control server

Sample
tailscale up --login-server "http://your-headscale-serverip:port" --advertise-exit-node

Since I run headscale on the same machine I want to use as an exit-node, I set it as localhost
tailscale up --login-server "http://localhost:8082" --advertise-exit-node

If the node is already registered, then we can advertise it as an exit-node in this manner
tailscale set --advertise-exit-node

1. First we confirm that our nodes are seen and their routes are either 0.0.0.0/0 and/or ::/0

Check routes using this command
headscale routes list

Setting up a
tailscale/headscale exit-node
On the client

On the server

As we can confirm here, the routes are advertised, but not enabled.

Output
ID | Machine | Prefix | Advertised | Enabled | Primary
1 | exit-node1 | 0.0.0.0/0 | true | false | -
2 | exit-node1 | ::/0 | true | false | -
3 | phone1 | ::/0 | false | false | -
4 | phone1 | 0.0.0.0/0 | false | false | -
5 | phone2 | ::/0 | false | false | -
6 | phone2 | 0.0.0.0/0 | false | false | -

2. To enable the routes, we will use the following command to allow the exit-node to
advertise itself, you will have to repeat this for every exit-node you want to add.

First select the route you wanna add, in my case I want both IPv4 and IPv6 so I'll add id 1 and 2
ID | Machine | Prefix | Advertised | Enabled | Primary
1 | exit-node1 | 0.0.0.0/0 | true | false | -
2 | exit-node1 | ::/0 | true | false | -
3 | phone1 | ::/0 | false | false | -
4 | phone1 | 0.0.0.0/0 | false | false | -
5 | phone2 | ::/0 | false | false | -
6 | phone2 | 0.0.0.0/0 | false | false | -

Command
headscale routes enable -r 1
headscale routes enable -r 2

Confirm we enabled it
headscale routes list

ID | Machine | Prefix | Advertised | Enabled | Primary
1 | exit-node1 | 0.0.0.0/0 | true | true | -
2 | exit-node1 | ::/0 | true | true | -
3 | phone1 | ::/0 | false | false | -
4 | phone1 | 0.0.0.0/0 | false | false | -
5 | phone2 | ::/0 | false | false | -
6 | phone2 | 0.0.0.0/0 | false | false | -

3. Test with your client to see if it worked, with these steps done any client should be able to
utilize your new exit-node

IPv4 Space
Address Block Address range Number of Addresses Scope Description

0.0.0.0/8 0.0.0.0-
0.255.255.255

16,777,216 Software Current

10.0.0.0/8 10.0.0.0–10.255.255.
255

16,777,216 Private network Used for local
communications
within a private
network.

100.64.0.0/10 100.64.0.0–100.127.
255.255

4,194,304 Private network Shared address
space for
communications
between a service
provider and its
subscribers when
using a carrier-grade
NAT.

127.0.0.0/8 127.0.0.0–127.255.2
55.255

16,777,216 Host Used for loopback
addresses to the
local host.

169.254.0.0/16 169.254.0.0–169.254
.255.255

65,536 Subnet Used for link-local
addresses between
two hosts on a single
link when no IP
address is otherwise
specified, such as
would have normally
been retrieved from
a DHCP server.

172.16.0.0/12 172.16.0.0–172.31.2
55.255

1,048,576 Private network Used for local
communications
within a private
network.

IP Index (WIP)
This Document Outlines plenty of publicly recognized IPv4 and IPv6 Addresses

192.0.0.0/24 192.0.0.0–192.0.0.25
5

256 Private network IETF Protocol
Assignments, DS-Lite
(/29).

192.0.2.0/24 192.0.2.0–192.0.2.25
5

256 Documentation Assigned as TEST-
NET-1,
documentation and
examples.

192.88.99.0/24 192.88.99.0–192.88.
99.255

256 Internet Reserved. Formerly
used for IPv6 to IPv4
relay (included IPv6
address block
2002::/16).

192.168.0.0/16 192.168.0.0–192.168
.255.255

65536 Private network Used for local
communications
within a private
network.

198.18.0.0/15 198.18.0.0–198.19.2
55.255

131,072 Private network Used for benchmark
testing of inter-
network
communications
between two
separate subnets.

198.51.100.0/24 198.51.100.0–198.51
.100.255

256 Documentation Assigned as TEST-
NET-2,
documentation and
examples.

203.0.113.0/24 203.0.113.0–203.0.1
13.255

256 Documentation Assigned as TEST-
NET-3,
documentation and
examples.

224.0.0.0/4 224.0.0.0–239.255.2
55.255

268,435,456 Internet In use for IP
multicast. (Former
Class D network.)

233.252.0.0/24 233.252.0.0-
233.252.0.255

256 Documentation Assigned as MCAST-
TEST-NET,
documentation and
examples.

240.0.0.0/4 240.0.0.0–255.255.2
55.254

268,435,455 Internet Reserved for future
use. (Former Class E
network.)

255.255.255.255/32 255.255.255.255 1 Subnet Reserved for the
"limited broadcast"
destination address.

IPv6 Space
Address Block First address Last Address Number of

addresses
Scope Description

::/128 :: :: 1 Software Unspecified
address

::1/128 ::1 ::1 1 host Loopback
address—a
virtual interface
that loops all
traffic back to
itself, the local
host

::ffff:0:0/96 ::ffff:0.0.0.0 ::ffff:255.255.255
.255

232 Software IPv4-mapped
addresses

::ffff:0:0:0/96 ::ffff:0:0.0.0.0 ::ffff:0:255.255.2
55.255

232 Software IPv4 translated
addresses

64:ff9b::/96 64:ff9b::0:0:0:0 64:ff9b::255.255.
255.255

232 Global Internet IPv4/IPv6
translation

64:ff9b:1::/48 64:ff9b:1:: 64:ff9b:1:ffff:ffff:f
fff:ffff:ffff

2,80 with 248 for
each IPv4

Private internets IPv4/IPv6
translation

100::/64 100:: 100::ffff:ffff:ffff:fff
f

264 Routing Discard prefix

2001:0000::/32 2001:: 2001::ffff:ffff:ffff:f
fff:ffff:ffff

296 Global Internet Teredo
tunneling

2001:20::/28 2001:20:: 2001:2f:ffff:ffff:fff
f:ffff:ffff:ffff

2100 Software ORCHIDv2

https://en.wikipedia.org/w/index.php?title=ORCHIDv2&action=edit&redlink=1

2001:db8::/32 2001:db8:: 2001:db8:ffff:ffff:
ffff:ffff:ffff:ffff

296 Documentation Addresses
used in
documentation
and example
source code

2002::/16 2002:: 2002:ffff:ffff:ffff:f
fff:ffff:ffff:ffff

2112 Global Internet The 6to4
 addressing
scheme
(deprecated)

fc00::/7 fc00:: fdff:ffff:ffff:ffff:ffff
:ffff:ffff:ffff

2121 Private Internets Unique local
address

fe80::/64 from
fe80::/10

fe80:: fe80::ffff:ffff:ffff:ff
ff

264 Link Link-local

address

ff00::/8 ff00:: ffff:ffff:ffff:ffff:ffff:
ffff:ffff:ffff

2120 Global Internet Multicast

address

https://en.wikipedia.org/wiki/6to4
https://en.wikipedia.org/wiki/Unique_local_address
https://en.wikipedia.org/wiki/Unique_local_address
https://en.wikipedia.org/wiki/Link-local_address#IPv6
https://en.wikipedia.org/wiki/Link-local_address#IPv6
https://en.wikipedia.org/wiki/Multicast_address#IPv6
https://en.wikipedia.org/wiki/Multicast_address#IPv6

Affiliates Management
On this section, we will go over the steps needed to manage the A-Chan webhook seen in the affiliates
channel

Step 1 is to have the webhook link copied, the webhook link is provided to librarians only.

Step 2 is to head over to https://discohook.org, The interface will be a bit intimidating at first but I will go over

the steps needed to manipulate the webhook

Step 3, over the top left most part of the website, you will see a Webhook URL text box

You will paste the webhook link that is provided to you in this box

Step 4, Head over to the affiliates channel and select the thread of your choice, then right click the thread
title and select copy ID. See pictures below

Webhooks

https://discohook.org

Step 5, Head back to the discohook site and paste the following after the Webhook URL
?thread_id=<the-thread_id-you-copied>

example:

Step 6, with these steps done, you may now send a new affiliate link with A-Chan webhook, Use the content
box for the affiliate link, an example is provided below:
__Example Server__

https://discord.gg/123abc

Step 7 (Optional), IF you need to edit an existing affiliate link, follow this procedure.
 Step 7.a Make sure the message is in the same thread that you’re editing, right click the message and
copy the message link

 Step 7.b Paste the message link into the corresponding box in discohook and click the “Load”

https://discord.gg/123abc

Network interface names in linux are generally named something like eth0, eth1, wlan0, wlan1 and
so on...

however with some recent changes, some Operating systems may have this slight annoyance
baked in called "Predictable Network Interface Names" or in my book, making my experience
worse

This guide will cover two ways to disable ifnames and is mainly aimed at Proxmox VE and
Debian

For Proxmox VE, we have two choices for boot methods. We have the traditional Legacy BIOS boot
which is usually accompanied by GRUB and the second option is EFI boot which is usually handled
by efibootmgr

to disable "Predictable" Names, use your text editor of choice, in my case it's nano, we will edit the
default GRUB configuration which is usually found in the /etc/default directory

my configuration looks like this

Disabling "Predictable"
Network Interface names
Introduction

GRUB method

nano /etc/default/grub

If you change this file, run 'update-grub' afterwards to update
/boot/grub/grub.cfg.
For full documentation of the options in this file, see:
info -f grub -n 'Simple configuration'

GRUB_DEFAULT=0
GRUB_TIMEOUT=3
GRUB_DISTRIBUTOR=`lsb_release -i -s 2> /dev/null || echo Debian`

However what we're really interested in is the following lines

We want to add net.ifnames=0 to GRUB_CMDLINE_LINUX_DEFAULT which handles the default
commandline options and passes it to our Proxmox GRUB entry. Your new config should look
something like this

GRUB_CMDLINE_LINUX_DEFAULT="quiet"
GRUB_CMDLINE_LINUX=""

Uncomment to enable BadRAM filtering, modify to suit your needs
This works with Linux (no patch required) and with any kernel that obtains
the memory map information from GRUB (GNU Mach, kernel of FreeBSD ...)
#GRUB_BADRAM="0x01234567,0xfefefefe,0x89abcdef,0xefefefef"

Uncomment to disable graphical terminal (grub-pc only)
#GRUB_TERMINAL=console

The resolution used on graphical terminal
note that you can use only modes which your graphic card supports via VBE
you can see them in real GRUB with the command `vbeinfo'
#GRUB_GFXMODE=640x480

Uncomment if you don't want GRUB to pass "root=UUID=xxx" parameter to Linux
#GRUB_DISABLE_LINUX_UUID=true

Uncomment to disable generation of recovery mode menu entries
#GRUB_DISABLE_RECOVERY="true"

Uncomment to get a beep at grub start
#GRUB_INIT_TUNE="480 440 1"

GRUB_CMDLINE_LINUX_DEFAULT="quiet"
GRUB_CMDLINE_LINUX=""

GRUB_DEFAULT=0
GRUB_TIMEOUT=3
GRUB_DISTRIBUTOR=`lsb_release -i -s 2> /dev/null || echo Debian`
GRUB_CMDLINE_LINUX_DEFAULT="quiet net.ifnames=0"
GRUB_CMDLINE_LINUX=""

After applying these changes, you have to update your GRUB entries by using the following
command

After applying the changes using the update-grub command you should apply some changes to
your Proxmox VE node before rebooting, this will be outlined on the last step on this guide.

If you are using UEFI then this guide is for you.

The guide for EFI is pretty simple as well. just like before It involves just editing a single config and
updating boot entries

For EFI boot on Proxmox VE, We need to edit the /etc/kernel/cmdline config. use your choice of text
editor.

Upon viewing the file you should see your default config. In my case it contains ZFS entries as I
used ZFS as the boot filesystem

We only need to append to the end net.ifnames=0 like so

After making this change, since we're on Proxmox VE just use the built in command which is

This should automatically update entries for you, after which you need to apply network config
changes

After updating our boot entries to use the traditional naming scheme, we must also update our
network changes to use the old names.

update-grub

EFI method

nano /etc/kernel/cmdline

root=ZFS=rpool/ROOT/pve-1 boot=zfs

root=ZFS=rpool/ROOT/pve-1 boot=zfs net.ifnames=0

proxmox-boot-tool refresh

Updating Network config to reflect changes

https://docs.jakefrosty.com/link/8#bkmrk-updating-network-con
https://docs.jakefrosty.com/link/8#bkmrk-updating-network-con
https://docs.jakefrosty.com/link/8#bkmrk-updating-network-con

to do this we have to edit the /etc/network/interfaces file and replace the old interface with the new
one

In my configuration, I have the enp8s0 and enp9s0 interfaces from my supermicro board with 2
LAN ports bonded for redundancy via a software bond. all I have to do is substitute the new
values/names into the config. If you're confused which one is your actual interface then use the
command ip a this will show you all your interfaces and their altnames aswell

source /etc/network/interfaces.d/*

auto lo
iface lo inet loopback

auto enp8s0
iface enp8s0 inet manual

auto enp9s0
iface enp9s0 inet manual

auto bond0
iface bond0 inet manual
 bond-slaves enp8s0 enp9s0
 bond-miimon 100
 bond-mode active-backup
 bond-primary enp8s0

auto vmbr0
iface vmbr0 inet static
 address 192.2.0.3/24
 gateway 192.2.0.1
 bridge-ports bond0
 bridge-stp off
 bridge-fd 0
 bridge-vlan-aware yes
 bridge-vids 2-4094
 mtu 9000
#physical network

2: eth0: <BROADCAST,MULTICAST,SLAVE,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master bond0 state UP
group default qlen 1000
 link/ether aa:bb:cc:dd:ee:ff brd ff:ff:ff:ff:ff:ff

now my configuration looks like this

After updating your network config, you can safely reboot your Proxmox VE node and connect to it
as usual!

 altname enp8s0
3: eth1: <BROADCAST,MULTICAST,SLAVE,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master bond0 state UP
group default qlen 1000
 link/ether aa:bb:cc:dd:ee:f0 brd ff:ff:ff:ff:ff:ff permaddr aa:bb:cc:dd:ee:f0
 altname enp9s0

source /etc/network/interfaces.d/*

auto lo
iface lo inet loopback

auto eth0
iface eth0 inet manual

auto eth1
iface eth1 inet manual

auto bond0
iface bond0 inet manual
 bond-slaves eth0 eth1
 bond-miimon 100
 bond-mode active-backup
 bond-primary eth0

auto vmbr0
iface vmbr0 inet static
 address 192.2.0.3/24
 gateway 192.2.0.1
 bridge-ports bond0
 bridge-stp off
 bridge-fd 0
 bridge-vlan-aware yes
 bridge-vids 2-4094
 mtu 9000
#physical network

